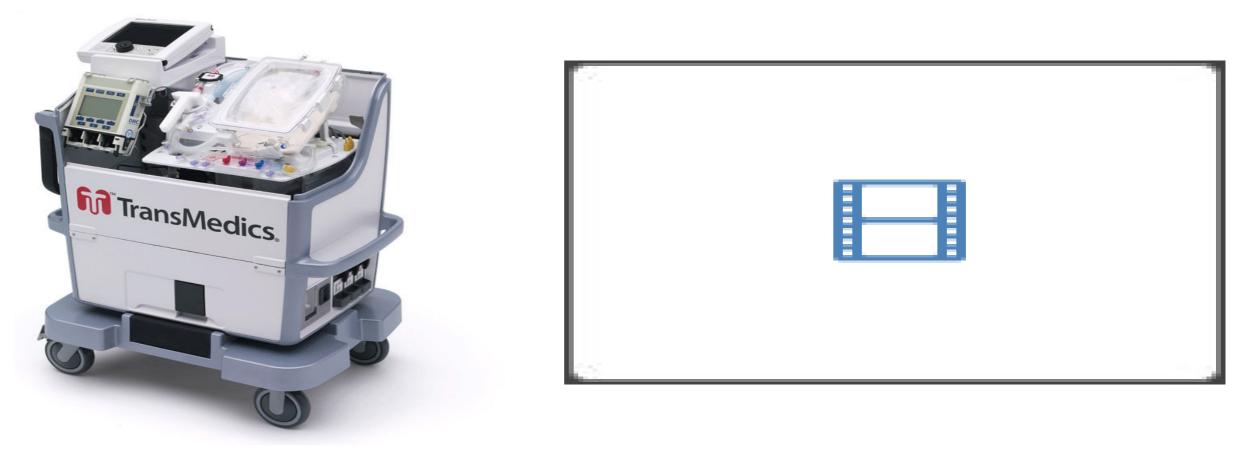
Perfusione ex-situ del cuore nel DBD e prospettive nel DCD

Prof Ugolino Livi, MD, FECTS University of Udine


STATI GENERALI

Organ Care System

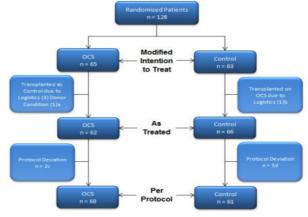
STATI GENERALI RETE NAZIONALE

OCS: Udine experience

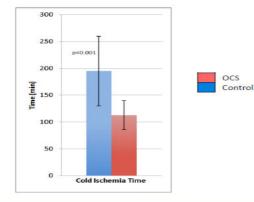
	47 CASES (89% UTILIZATION, 42 UTILIZED GRAFTS) SINCE 2007					
	DONORS					
	Mean age, years	47 ± 11				
	Age>55 years	9 (21%)				
	CAD	3 (7%)				
	Expected IT > $5h$	23 (55%)				
	Cardiac arrest	8 (19%)				
	Reports use of narcotics	4 (10%)				
	RECIPIENTS					
	Mean age, years	56 ± 12				
	ECMO	8 (19%)				
	VAD	7 (17%)				
	REDO	4 (10%)				
GENERALI	Mean cold ischemic time, min	133 ± 27				
AZIONALE PIANTI	Mean OCS time, min	282 ± 76				
	Mean total «out of body» time, min	400 ± 101				

Potential OCS benefits

 By reducing ischemic time 	PRESERVATION	(PROCEED II)
 By increasing acceptance of organs 	ASSESSMENT	(EXPAND)
 By improving graft quality 	RECONDITIONING	?
 By decreasing incidence of CAV 	I-MODULATION	?
 By creating new heart 	REGENERATION	?



OCS (Heart) Clinical Trials


	Year	Ν	Donor
PROTECT	2006-7	22	Standard
PROTECT II	2007-8	20	Standard
PROCEED	2007-8	15	Standard
PROCEED II	2011-2013	128	Standard
EXPAND	2015-2019	93	Extended
STATI GENERALI RETE NAZIONALE TRAPIANTI	6 ·7·8 NOVEMBRE		

PROCEED II Findings

- 30 day patient and graft survival are similar when the donor heart preserved on OCS vs on ice
- No different in secondary endpoints of cardiac –related SAE, Rejection, ICU stay
- Cold ischemia time significantly shorter, despite longer total preservation time

THE LOCKET

THE LANCET

Available online, 14 April 2015 In Press, Corrected Proof — Note to users

Articles

Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial

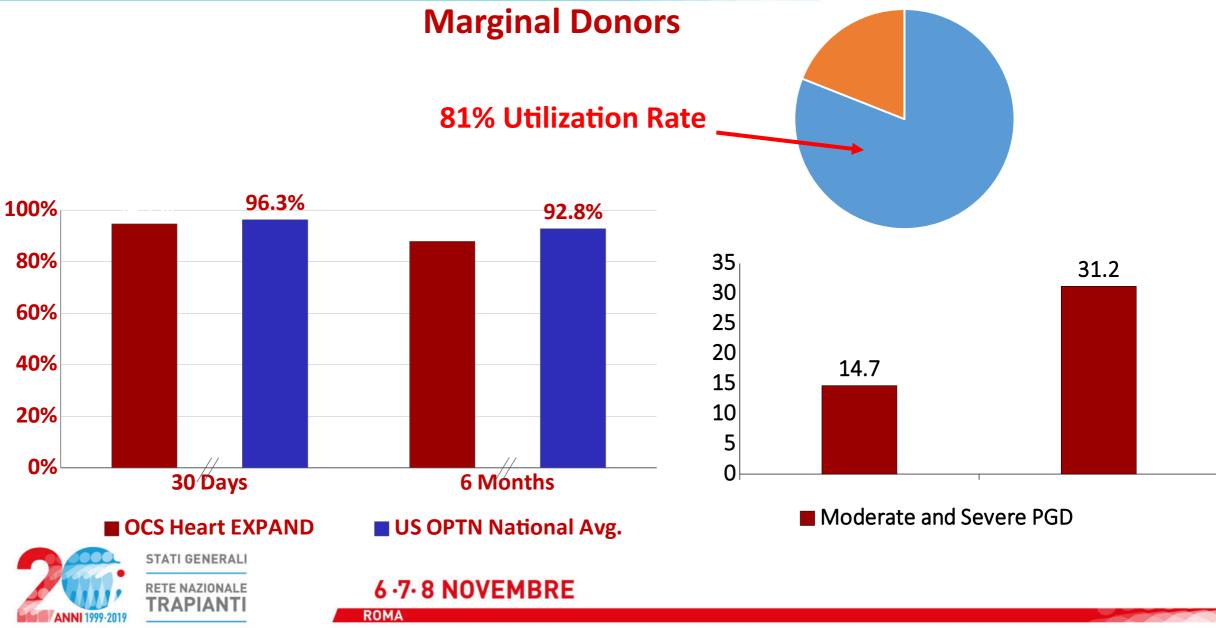
Prolonged OCS Heart Perfusion

DONOR HEART TIMINGS	CASE 1	CASE 2
 Clamp to clamp time OCS perfusion time Total ischemic time 	10 Hr 11 min <i>8 Hr 23 min</i> <i>43+52min</i>	17 Hr 03 min 15 Hr 55 min 68 min
RECIPIENT OUTCOME	CASE 1	CASE 2
 VA-ECMO Ventilation Hospital length of stay Follow-up 	17.5 Hr 3 Days 15 Days > 1 yr	44 Hr 5 Days 24 Days 7 months

Case 1: Stamp NL et al. Heart Lung Circ. 2015 Jun;24(6):611-3 Case 2: Kaliyev R et al. Artif Organs. 2019 Mar;43(3):319-320

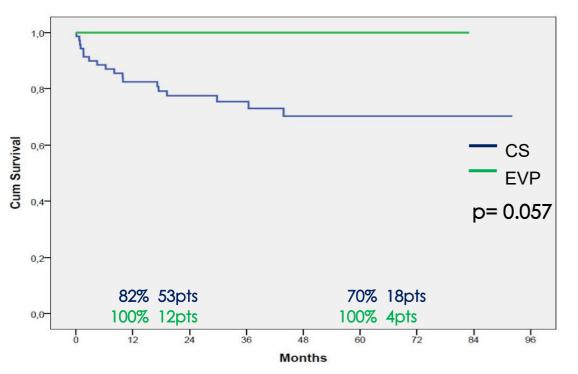
Marginal Donors

- Single Arm Study:
 - Because these hearts are not routinely being utilized and could not be compared to standard criteria hearts
- **Donor Criteria** Targeted donor hearts that may benefit from perfusion
 - Extended ischemia time >4 hours
 - Older donors >45 y
 - Down time \geq 20 mins
 - LVH hearts 12-16 mm thickness
 - Non specific CAD


• Effectiveness Endpoints:

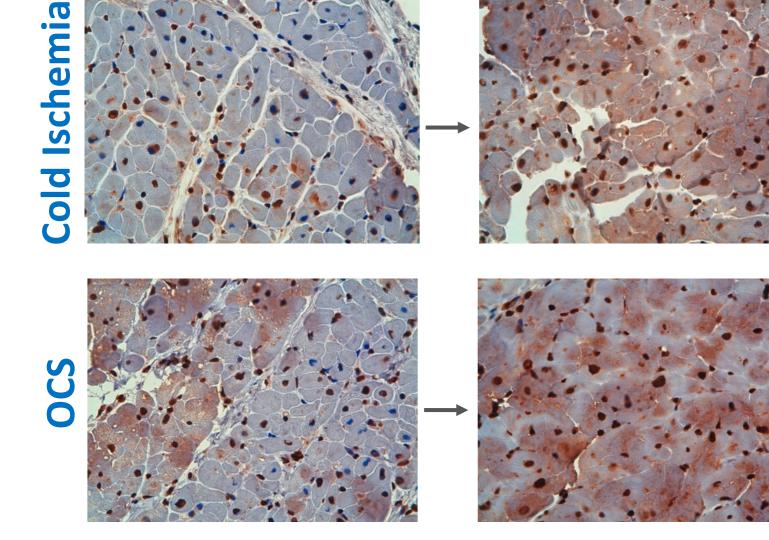
- Primary: Composite of patient survival at day 30 and freedom from severe PGD in the first 24 hours
- Secondary: Donor hearts utilization rate

• Safety Endpoint:


• Rate of moderate and severe PGD up-to day 30 post transplant

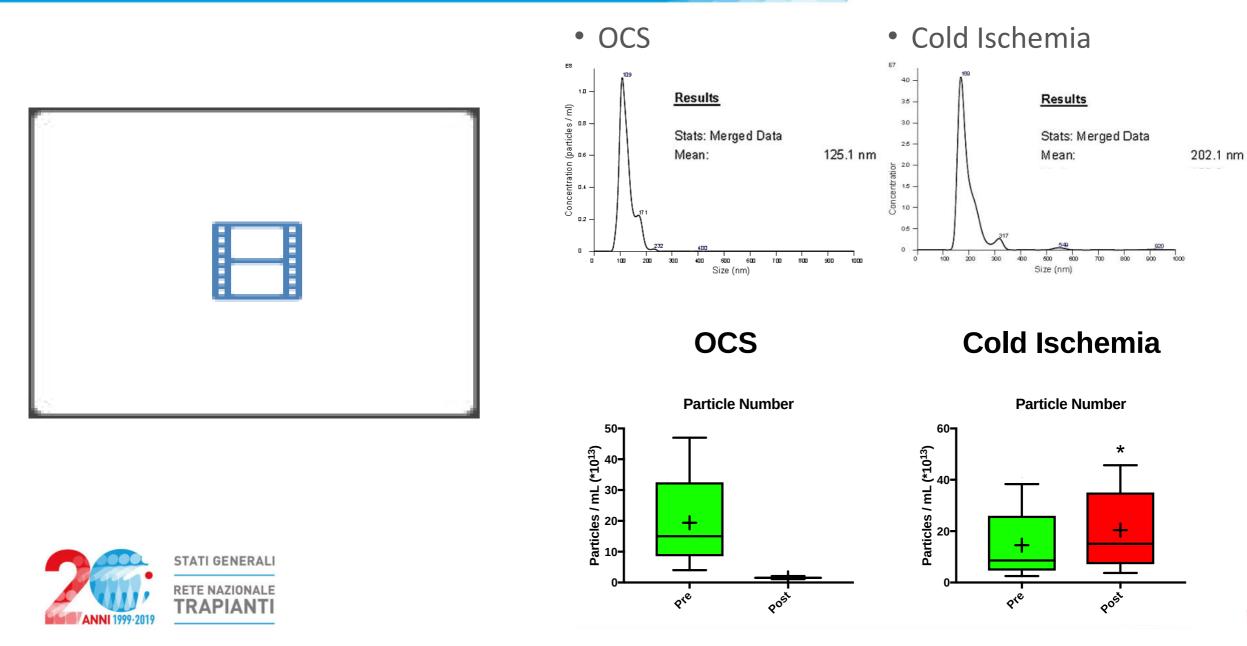
Udine experience: Marginal donors

Peri-operative data	CS (n=72)	EVP (n=17)	р
CPB time (min), median (min-max)	210 (136-394)	176 (125-413)	0.03*
lschemic time (min), median (min-max)	229 (91-365)	138 (103-231)	<0.01*
Total Surgical Time (min), median (min-max)	450 (247-840)	400 (220-615)	0.05*


Early outcome	CS (n=72)	EVP (n=17)	р
Overall complications, % (n)	88% (63)	65% (11)	0.04*
MAV hours, median (min-max)	48 (10-408)	24 (12-192)	0.02*
MAV >72 hours, % (n)	24% (17)	6% (1)	0.09
High dose inotropic support, % (n)	22% (16)	12% (2)	0.27
ECMO, % (n)	3% (2)	0	0.65
IABP, % (n)	22% (16)	6% (1)	0.11
AKI, % (n)	28% (20)	18% (3)	0.30
PGF, % (n)	15% (11)	12% (2)	0.53
Rejection \geq grade 2, % (n)	13% (9)	12% (2)	0.65
Atrial Fibrillation, % (n)	17% (12)	6% (1)	0.24
ICU stay (days), median (min-max)	6 (2-83)	5 (2-20)	0.04*
Hospital stay (days), median (min-max)	33 (14-279)	32 (19-102)	0.71
Early death, % (n)	7% (5)	0	0.34

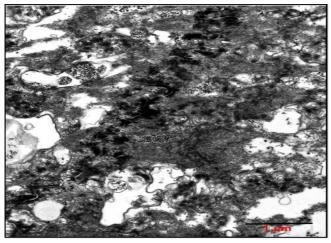
Histological analysis

Mithocondrial dysfunction - PARKIN

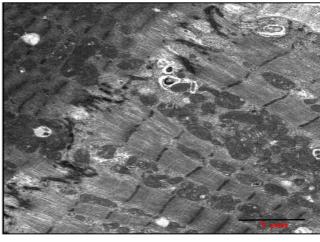

Pre Implant

Explant

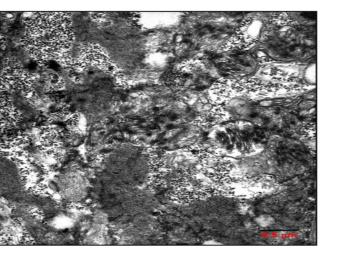
Post Declamp

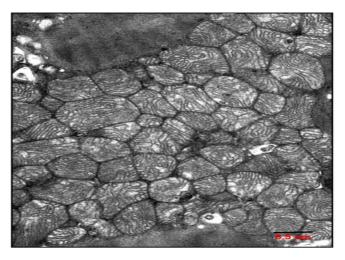

Nanoparticle tracking analysis

Ultrastructural analysis


Transmission Electron Microscopy

Cold storage




Hearts preserved in Cold Storage showed <u>cardiomyocyte</u> <u>degeneration</u>, with maximal cell suffering after heart reperfusion

OCS

Conversely, after ex-vivo reperfusion, cardiomyocyte showed wellpreserved organelles also after heart reperfusion

Experience with DCD hearts

Lower 1966, Virginia - Resuscitated human cadaver heart and transplanted it into a baboon where it provided satisfactory circulatory support for several hours.

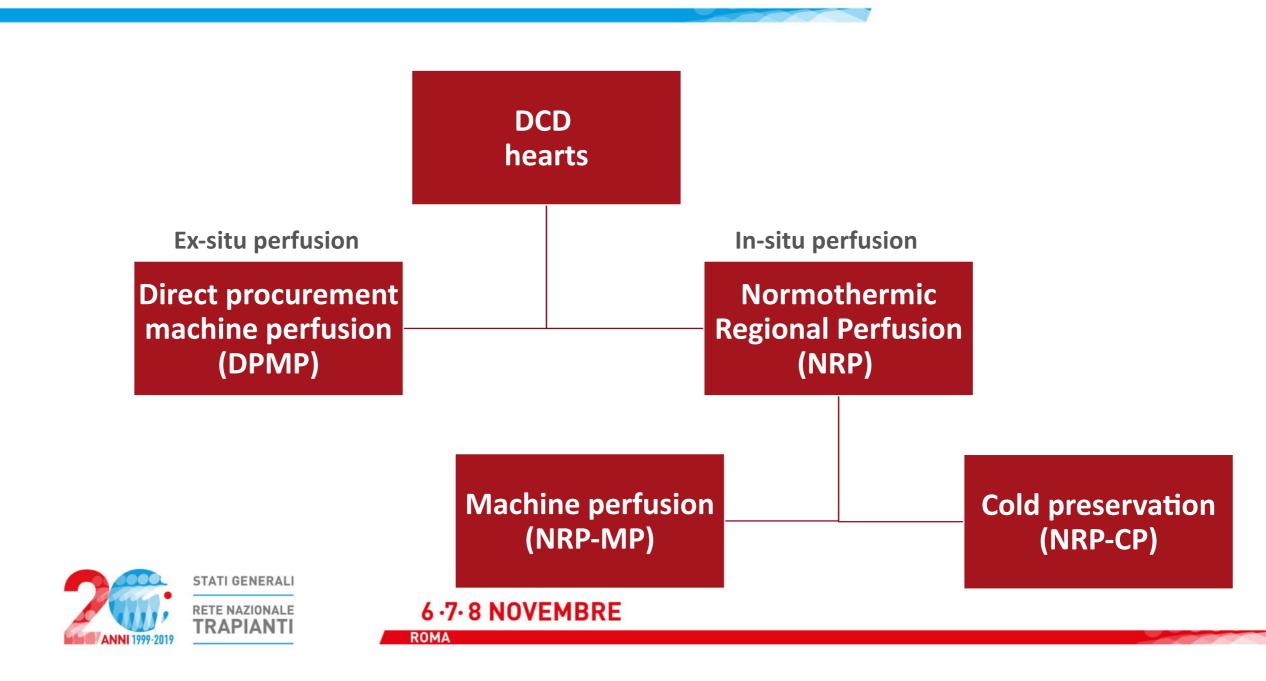
- •First heart Tx was technically a DCD donor heart
- •3 DCD hearts used in paediatric heart transplants with good outcomes, all alive at 6 months; Denver, USA
- •Human DCD heart successfully resuscitated using extracorporeal perfusion

Pediatric Heart Transplantation after Declaration of Cardiocirculatory Death

Mark M. Boucek, M.D., Christine Mashburn, B.S.N., Susan M. Dunn, M.B.A., Rebecca Frizell, B.S.N., Leah Edwards, Ph.D., Biagio Pietra, M.D., and David Campbell, M.D., for the Denver Children's Pediatric Heart Transplart Team*

N ENGLI MED 359:7 WWW.NEJM.ORG AUGUST 14, 2008

CASE REPORTS


Cardiac Recovery in a Human Non–Heart-beating Donor After Extracorporeal Perfusion: Source for Human Heart Donation?

Ayyaz Ali, MRCS,⁴ Paul White, PhD,^b Kumud Dhital, FRCS,⁸ Marian Ryan, RGN,⁴ Steven Tsui, FRCS,⁴ and Stephen Large, FRCP, FRCS⁴

DPP – direct procurement and perfusion

- Declaration of death
- Reintubation and sternotomy
- Donor blood drainage and collection
- Transmedics OCS priming
- Cardioplegia into DCD heart
- Cardiac removal and instrumentation upon OCS

DRAWBACKS

Toxic milieu: blood hyperkalemic, hyperglycemic, hypoxic, hypercapnic, acidotic, high levels of cytokines and catecholamines.

Functional assessment: perfusate lactate concentration <5mMol/L, (artery lactate > coronary sinus lactate).

Questioned validity as metabolic marker (reliable indicator ?)

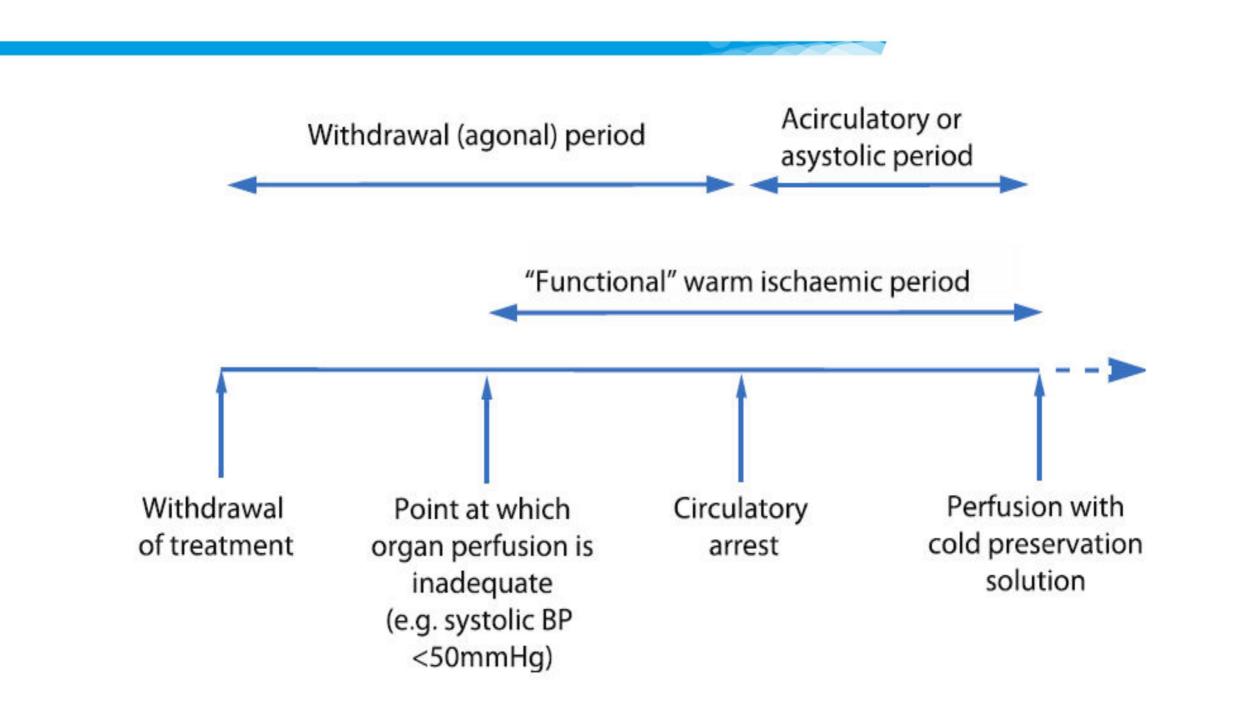
Small and dehydrated donors \rightarrow no enough blood to prime OCS

Time from withdrawal of life support to cardioplegia <30min

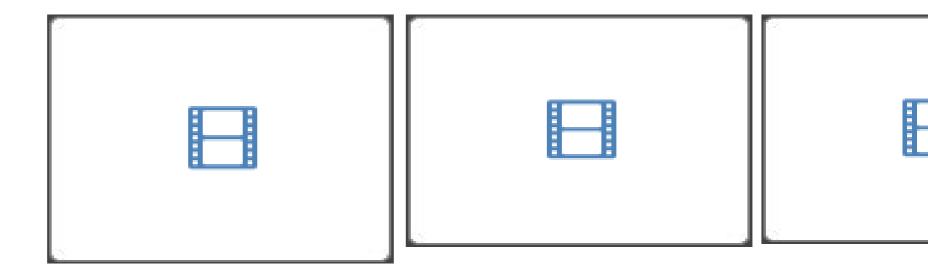
NRP – Normothermic Regional Perfusion

- Declaration of death
- Re-Intubation and sternotomy
- Heparin 30'000 UI into the RA and 20'000 UI into the PA
- <u>Clamping of Aortic Arch Vessels</u>
- Aortic Right Atrial Cannulation \rightarrow ECC
- DCD Heart Reconditioned
- NRP Discontinued (after 90 min)
- Cardiac Assessment with TEE and SG catheter
- Blood Collection to prime OCS

ADVANTAGES


Earlier reperfusion, shorter warm ischaemic time (on average 8 min) Time from withdrawal of life support to NRP up to 180 min Functional assessment as usual (TEE/SG catheter) More confidence in decision making Better donor organ utilization

DRAWBACKS



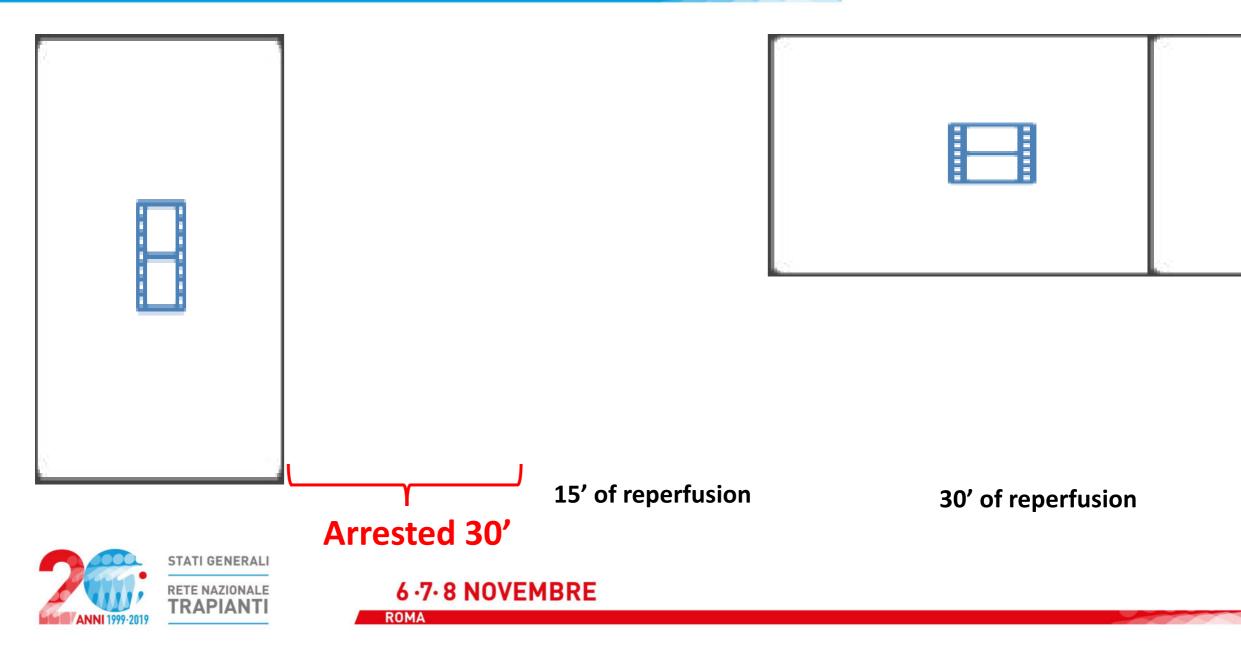
STATI GENERETE NAZIORETE NAZIOConstruction<trt

Legal and Ethical issues (heart perfusion within the donor)

First DCD Human Heart Transplant

Adult heart transplantation with distant procurement and ex-vivo preservation of donor hearts after circulatory death: a case series

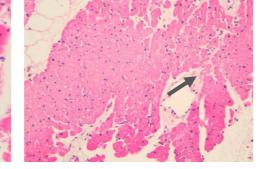
Kumud K Dhital, Arjun Iyer, Mark Connellan, Hong C Chew, Ling Gao, Aoife Doyle, Mark Hicks, Gayathri Kumarasinghe, Claude Soto, Andrew Dinale, Bruce Cartwright, Priya Nair, Emily Granger, Paul Jansz, Andrew Jabbour, Eugene Kotlyar, Anne Keogh, Christopher Hayward, Robert Graham, Phillip Spratt, Peter Macdonald


	Recipient 1	Recipient 2	Recipient 3	Donor 1	Donor 2	Donor 3
Age (years)	57	43	57	26	26	27
Sex	Male	Female	Male	Male	Male	Male
Diagnosis	Familial DCM	Viral DCM	ARVD*	Hypoxia	Trauma	Trauma
Blood group	Α	Α	0	А	Α	0
Height (cm)	163	176	170	183	173	182
Bodyweight (kg)	71	70	79	92	70	79
Ejection fraction (%)	20	18	19	75	50	NA
LVEDD (mm)	84	61	67		12	- 42
TPG (mm Hg)	7	5	8	-		
Creatinine concentration (µmol/L)	99	135	149			
eGFR (mL/min BSAc)	44	65	42		••	
Total bilirubin concentration (µmol/L)	30	60	42			

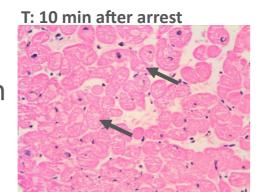
	Donor 1	Donor 2	Donor 3
Withdrawal parameters			
Location of withdrawal	Operating theatre	Intensive care unit	Anaesthetic bay
Withdrawal to systolic blood pressure <50 mm Hg (min)	7	5	11
Withdrawal to SaO ₂ <50% (min)	8	2	1
Withdrawal to cessation of circulation (min)	16	10	11
Observation period (min)	2	2	5
Warm ischaemic time (min)*	28	25	22
OCS parameters			
Pacing	Yes	Yes	No
Adrenaline infusion (µg/h)	5	5	5-7
Adenosine infusion (mg/h)	0-21	0-21	0-21
Total OCS perfusion time (min)	257	260	245
Total ischaemic time (min)†	90	96	107
A-V lactate at start of perfusion (mmol/L)	8.30-8.10	6.79-6.48	7.60-7.40
A-V lactate at end of perfusion (mmol/L)	3.60-3.60	2.80-2.30	2.69-2.54

Lancet 2015

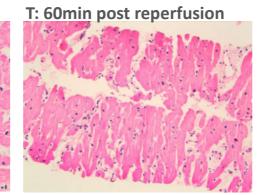

DCD Udine project



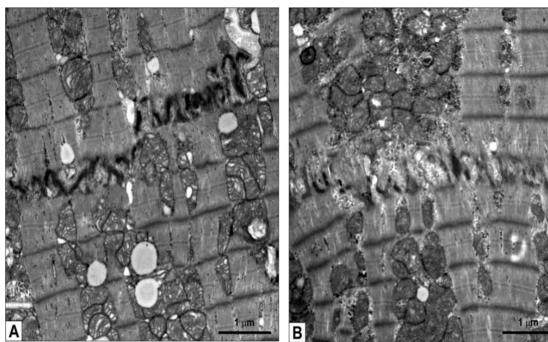
From arrest to reperfusion


Histological findings

- Contraction bands
- T: 10 min after arrest



 Intracellular vacuolization


 Endothelial cells swelling

T: 60min post reperfusion

Ultrastructural changes

Bonetti A & Ortolani F. Histology & Electron Microscopy Unit, Department of Medicine, University of Udine, Italy

Omnia mutantur, nihil interit

Everything changes, nothing perishes

doi: 10.1111/ajt.13446

Altered Immunogenicity of Donor Lungs via Removal of Passenger Leukocytes Using *Ex Vivo* Lung Perfusion

J. P. Stone^{1,2}, W. R. Critchley^{1,2}, T. Major^{1,2}, G. Rajan², I. Risnes³, H. Scott³, Q. Liao⁴, B. Wohlfart⁴, T. Sjöberg⁴, N. Yonan², S. Steen⁴ and J. E. Fildes^{1,2,*}

Ex-vivo perfusion reduces

- graft immunogenicity by decreasing the transfer of passenger leukocytes from the donor graft to the recipient
- <u>ischemic time</u> > reduction of I/R injury and activation of innate immunity system

Stem cells immunomodulation and rigeneration

Abstract Le Blanc K, Ringdén O (Karolinska Univer-

mesenenyman siem cens (mises) nom adult marrow

can differentiate in vitro and in vivo into various cell

types, such as bone, fat and cartilage. MSCs preferen-

tially home to damaged tissue and may have therapeutic potential. *In vitro* data suggest that MSCs have

low inherent immunogenicity as they induce little, if

any, proliferation of allogeneic lymphocytes. Instead,

MSCs appear to be immunosuppressive in vitro. They

Sweden). Immucells and clinical 2007; **262**: 509–

inhibit T-cell proliferation to alloantigens and mitogens and prevent the development of cytotoxic T-cells. *In vivo*, MSCs prolong skin allograft survival and have several immunomodulatory effects, which are presented and discussed in the present study. Possible clinical applications include therapy-resistant severe acute graft-versus-host disease, tissue repair, treatment of rejection of organ allografts and autoimmune disorders.

Keywords: acute graft-versus-host disease, haematopoietic stem cell transplantation, immunomodulation, mesenchymal stem cells, tissue toxicity.

cytotoxic T-cells

6 ·7·8 NOVEMBRE

ROMA

MSCs inhibit T-cell proliferation and prevent the development of